Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632858

RESUMO

Rock hind (Epinephelus adscensionis) and spotted moray (Gymnothorax moringa) are ubiquitous mesopredators that co-occur in the nearshore waters of Ascension Island in the South Atlantic Ocean, where they have significant cultural and subsistence value, but management of their non-commercial take is limited. This isolated volcanic system is home to high biomass and low species diversity, which poses two key questions: How can two mesopredators that perform similar ecological roles coexist? And if these two species are so ecologically similar, can they be managed using the same approach? Here, we combined acoustic telemetry, stomach content analysis, and stable isotope analysis to (i) explore space use and diet choices within and between these two species and (ii) to assess appropriate species-specific management options. Although rock hind had high residency and small calculated home ranges (0.0001-0.3114 km2), spotted moray exhibited shorter periods of residency (<3 months) before exiting the array. Vertical space use differed significantly across the 20-month tracking period, with individual differences in vertical space observed for both species. A hierarchical generalized additive model using 12-h averaged depth data identified that rock hind occurred lower in the water column than spotted moray, with both species occupying moderately deeper depths at night versus day (+1.6% relative depth). Spotted moray depth was also significantly predicted by lunar illumination. Aggregating samples by species and tissue type, Bayesian ecological niche modeling identified a 53.14%-54.15% and 78.02%-97.08% probability of niche overlap from fin clip and white muscle, respectively, whereas limited stomach content data indicated a preference for piscivorous prey. Variability in niche breadth between years suggests these species may exploit a range of prey items over time. These findings indicate that although these two species perform a similar ecological role by feeding on prey occupying the same trophic levels, subtle differences in movement behaviors between them suggest a one-rule-fits-all management approach is not likely the most effective option.

2.
Front Oncol ; 13: 1289249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916156

RESUMO

Introduction: Injectable GnRH receptor agonists have been shown to improve cancer control when combined with radiotherapy. Prostate SBRT offers an abbreviated treatment course with comparable efficacy to conventionally fractionated radiotherapy. Relugolix is a new oral GnRH receptor antagonist which achieves rapid, sustained testosterone suppression. This prospective study sought to evaluate early testosterone suppression and PSA response following relugolix and SBRT for intermediate to high prostate cancer. Methods: Relugolix was initiated at least 2 months prior to SBRT. Interventions to improve adherence were not utilized. PSA and total testosterone levels were obtained prior to and 1-4 months post SBRT. Profound castration was defined as serum testosterone ≤ 20 ng/dL. Early PSA nadir was defined as the lowest PSA value within 4 months of completion of SBRT. Per prior trials, we examined the percentage of patients who achieved PSA level of ≤ 0.5 ng/mL and ≤ 0.2 ng/mL during the first 4 months post SBRT. Results: Between July 2021 and January 2023, 52 men were treated at Georgetown with relugolix (4-6 months) and SBRT (36.25-40 Gy in 5 fractions) per an institutional protocol (IRB 12-1775). Median age was 71 years. 26.9% of patients were African American and 28.8% were obese (BMI ≥30 kg/m2). The median pretreatment PSA was 9.1 ng/ml. 67% of patients were ≥ Grade Group 3. 44 patients were intermediate- and 8 were high-risk. Patients initiated relugolix at a median of 3.6 months prior to SBRT with a median duration of 6.2 total months. 92.3% of patients achieved profound castration during relugolix treatment. Poor drug adherence was observed in 2 patients. A third patient chose to discontinue relugolix due to side effects. By post-SBRT month 4, 87.2% and 74.4% of patients achieved PSA levels ≤ 0.5 ng/ml and ≤ 0.2 ng/ml, respectively. Discussion: Relugolix combined with SBRT allows for high rates of profound castration with low early PSA nadirs. We observed a 96% testosterone suppresion rate without the utilization of scheduled cues/reminders. This finding supports the notion that patients with localized prostate cancer can consistently and successfully follow an oral ADT protocol without daily reminders. Given relugolix's potential benefits over injectable GnRH receptor agonists, its usage may be preferred in specific patient populations (fear of needles, prior cardiovascular events). Future studies should focus on boundaries to adherence in specific underserved populations.

3.
Mar Environ Res ; 192: 106239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37926039

RESUMO

Seawater contains a wealth of genetic information, representing the biodiversity of numerous species residing within a particular marine habitat. Environmental DNA (eDNA) metabarcoding offers a cost effective, non-destructive method for large scale monitoring of environments, as diverse taxonomic groups are detected using metabarcoding assays. A large-scale eDNA monitoring program of marine vertebrates was conducted across three sampling seasons (Spring 2018, Autumn 2019; Spring 2019) in coastal waters of Brazil. The program was designed to investigate eDNA as a testing method for long term monitoring of marine vertebrates following the Fundão tailings dam failure in November 2015. While no baseline samples were available prior to the dam failure there is still value in profiling the taxa that use the impacted area and the trajectory of recovery. A total of 40 sites were sampled around the mouths of eight river systems, covering approximately 500 km of coastline. Metabarcoding assays targeting the mitochondrial genes 16S rRNA and COI were used to detect fish, marine mammals and elasmobranchs. We detected temporal differences between seasons and spatial differences between rivers/estuaries sampled. Overall, the largest eDNA survey in Brazil to date revealed 69 families from Class Actinopterygii (fish), 15 species from Class Chondrichthyes (sharks and rays), 4 species of marine and estuarine mammals and 23 species of conservation significance including 2 species of endangered dolphin. Our large-scale study reinforces the value eDNA metabarcoding can bring when monitoring the biodiversity of coastal environments and demonstrates the importance of collection of time-stamped environmental samples to better understand the impacts of anthropogenic activities.


Assuntos
DNA Ambiental , Humanos , Animais , RNA Ribossômico 16S/genética , Brasil , Monitoramento Ambiental/métodos , Código de Barras de DNA Taxonômico/métodos , Vertebrados/genética , Biodiversidade , Ecossistema , Peixes , Mamíferos/genética
4.
PeerJ ; 11: e15522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334135

RESUMO

Crabs can be transported beyond their native range via anthropogenic-mediated means such as aquarium trade, live seafood trade and shipping. Once introduced into new locations, they can establish persisting populations and become invasive, often leading to negative impacts on the recipient environment and native species. Molecular techniques are increasingly being used as complementary tools in biosecurity surveillance and monitoring plans for invasive species. Molecular tools can be particularly useful for early detection, rapid identification and discrimination of closely related species, including when diagnostic morphological characters are absent or challenging, such as early life stages, or when only part of the animal is available. In this study, we developed a species-specific qPCR assay, which targets the cytochrome c oxidase subunit 1 (CO1) region of the Asian paddle crab Charybdis japonica. In Australia, as well as many parts of the world, this species is considered invasive and routine biosecurity surveillance is conducted to reduce the risk of establishment. Through rigorous testing of tissue from target and non-target species we demonstrate that this assay is sensitive enough to detect as little as two copies per reaction and does not cross amplify with other closely related species. Field samples and environmental samples spiked with C. japonica DNA in high and low concentrations indicate that this assay is also a promising tool for detecting trace amounts of C. japonica eDNA in complex substrates, making it a useful complementary tool in marine biosecurity assessments.


Assuntos
Crustáceos , DNA , Animais , Reação em Cadeia da Polimerase em Tempo Real , DNA/análise , Crustáceos/genética , Austrália , Espécies Introduzidas
5.
Mol Ecol Resour ; 22(2): 519-538, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398515

RESUMO

Advances in high-throughput sequencing (HTS) are revolutionizing monitoring in marine environments by enabling rapid, accurate and holistic detection of species within complex biological samples. Research institutions worldwide increasingly employ HTS methods for biodiversity assessments. However, variance in laboratory procedures, analytical workflows and bioinformatic pipelines impede the transferability and comparability of results across research groups. An international experiment was conducted to assess the consistency of metabarcoding results derived from identical samples and primer sets using varying laboratory procedures. Homogenized biofouling samples collected from four coastal locations (Australia, Canada, New Zealand and the USA) were distributed to 12 independent laboratories. Participants were asked to follow one of two HTS library preparation workflows. While DNA extraction, primers and bioinformatic analyses were purposefully standardized to allow comparison, many other technical variables were allowed to vary among laboratories (amplification protocols, type of instrument used, etc.). Despite substantial variation observed in raw results, the primary signal in the data was consistent, with the samples grouping strongly by geographical origin for all data sets. Simple post hoc data clean-up by removing low-quality samples gave the best improvement in sample classification for nuclear 18S rRNA gene data, with an overall 92.81% correct group attribution. For mitochondrial COI gene data, the best classification result (95.58%) was achieved after correction for contamination errors. The identified critical methodological factors that introduced the greatest variability (preservation buffer, sample defrosting, template concentration, DNA polymerase, PCR enhancer) should be of great assistance in standardizing future biodiversity studies using metabarcoding.


Assuntos
Código de Barras de DNA Taxonômico , Laboratórios , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 18S
6.
Mol Ecol Resour ; 22(1): 56-65, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34146448

RESUMO

Population genetic data can provide valuable information on the demography of a species. For rare and elusive marine megafauna, samples for generating the data are traditionally obtained from tissue biopsies, which can be logistically difficult and expensive to collect and require invasive sampling techniques. Analysis of environmental DNA (eDNA) offers an alternative, minimally invasive approach to provide important genetic information. Although eDNA approaches have been studied extensively for species detection and biodiversity monitoring in metabarcoding studies, the potential for the technique to address population-level questions remains largely unexplored. Here, we applied "eDNA haplotyping" to obtain estimates of the intraspecific genetic diversity of a whale shark (Rhincodon typus) aggregation at Ningaloo reef, Australia. Over 2 weeks, we collected seawater samples directly behind individual sharks prior to taking a tissue biopsy sample from the same animal. Our data showed a 100% match between mtDNA sequences recovered in the eDNA and tissue sample for all 28 individuals sampled. In the seawater samples, >97% of all reads were assigned to six dominant haplotypes, and a clear dominant signal (~99% of sample reads) was recovered in each sample. Our study demonstrates accurate individual-level haplotyping from seawater eDNA. When DNA from one individual clearly dominates each eDNA sample, it provides many of the same opportunities for population genetic analyses as a tissue sample, potentially removing the need for tissue sampling. Our results show that eDNA approaches for population-level analyses have the potential to supply critical demographic data for the conservation and management of marine megafauna.


Assuntos
DNA Ambiental , Tubarões , Animais , Austrália , Haplótipos , Água do Mar , Tubarões/genética
8.
Commun Biol ; 4(1): 236, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619330

RESUMO

Environmental DNA (eDNA) metabarcoding is a sensitive and widely used approach for species detection and biodiversity assessment. The most common eDNA collection method in aquatic systems is actively filtering water through a membrane, which is time consuming and requires specialized equipment. Ecological studies investigating species abundance or distribution often require more samples than can be practically collected with current filtration methods. Here we demonstrate how eDNA can be passively collected in both tropical and temperate marine systems by directly submerging filter membranes (positively charged nylon and non-charged cellulose ester) in the water column. Using a universal fish metabarcoding assay, we show that passive eDNA collection can detect fish as effectively as active eDNA filtration methods in temperate systems and can also provide similar estimates of total fish biodiversity. Furthermore, passive eDNA collection enables greater levels of biological sampling, which increases the range of ecological questions that eDNA metabarcoding can address.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , DNA Ambiental/isolamento & purificação , Monitoramento Ambiental , Peixes/genética , Metagenoma , Metagenômica , Animais , Monitoramento Ambiental/instrumentação , Peixes/classificação , Membranas Artificiais , Oceanos e Mares , Filogenia
9.
Mol Ecol Resour ; 21(5): 1697-1704, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33580619

RESUMO

Metabarcoding of environmental DNA (eDNA) when coupled with high throughput sequencing is revolutionising the way biodiversity can be monitored across a wide range of applications. However, the large number of tools deployed in downstream bioinformatic analyses often places a challenge in configuration and maintenance of a workflow, and consequently limits the research reproducibility. Furthermore, scalability needs to be considered to handle the growing amount of data due to increase in sequence output and the scale of project. Here, we describe eDNAFlow, a fully automated workflow that employs a number of state-of-the-art applications to process eDNA data from raw sequences (single-end or paired-end) to generation of curated and noncurated zero-radius operational taxonomic units (ZOTUs) and their abundance tables. This pipeline is based on Nextflow and Singularity which enable a scalable, portable and reproducible workflow using software containers on a local computer, clouds and high-performance computing (HPC) clusters. Finally, we present an in-house Python script to assign taxonomy to ZOTUs based on user specified thresholds for assigning lowest common ancestor (LCA). We demonstrate the utility and efficiency of the pipeline using an example of a published coral diversity biomonitoring study. Our results were congruent with the aforementioned study. The scalability of the pipeline is also demonstrated through analysis of a large data set containing 154 samples. To our knowledge, this is the first automated bioinformatic pipeline for eDNA analysis using two powerful tools: Nextflow and Singularity. This pipeline addresses two major challenges in the analysis of eDNA data; scalability and reproducibility.


Assuntos
Biologia Computacional , Código de Barras de DNA Taxonômico , DNA Ambiental , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
10.
Mol Ecol Resour ; 19(2): 366-376, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30485662

RESUMO

Effective biomonitoring is critical for driving management outcomes that ensure long-term sustainability of the marine environment. In recent years, environmental DNA (eDNA), coupled with metabarcoding methodologies, has emerged as a promising tool for generating biotic surveys of marine ecosystems, including those under anthropogenic pressure. However, more empirical data are needed on how to best implement eDNA field sampling approaches to maximize their utility for each specific application. The effect of the substrate chosen for eDNA sampling on the diversity of marine taxa detected by DNA metabarcoding has not yet been systematically analysed, despite aquatic systems being those most commonly targeted for eDNA studies. We investigated the effect of four commonly used eDNA substrates to explore taxonomic diversity: (a) surface water, (b) marine sediment, (c) settlement plates and (d) planktonic tows. With a focus on coastal ports, 332 eDNA samples from Australia (Indian and Southern oceans) and Kazakhstan (Caspian Sea) were collected and analysed by multi-assay DNA metabarcoding. Across study locations, between 30% and 52% of eukaryotic families detected were unique to a particular substrate and <6% of families were found in all four substrates. Taxonomic composition varied significantly depending on the substrate sampled implying that the suitability (and bias) of an eDNA substrate will depend on the focal taxa. These findings demonstrate that single substrate eDNA metabarcoding likely underestimates the total eukaryotic diversity. Future eDNA experimental design should consider incorporating multiple substrates or select substrate(s) best suited to the specific detection of target taxa.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , Metagenômica/métodos , Austrália , DNA/química , DNA/genética , Cazaquistão , Água do Mar
11.
Mol Ecol Resour ; 17(3): 443-453, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27483456

RESUMO

Prevention and early detection are well recognized as the best strategies for minimizing the risks posed by nonindigenous species (NIS) that have the potential to become marine pests. Central to this is the ability to rapidly and accurately identify the presence of NIS, often from complex environmental samples like biofouling and ballast water. Molecular tools have been increasingly applied to assist with the identification of NIS and can prove particularly useful for taxonomically difficult groups like ascidians. In this study, we have developed real-time PCR assays suited to the specific identification of the ascidians Didemnum perlucidum and Didemnum vexillum. Despite being recognized as important global pests, this is the first time specific molecular detection methods have been developed that can support the early identification and detection of these species from a broad range of environmental sample types. These fast, robust and high-throughput assays represent powerful tools for routine marine biosecurity surveillance, as detection and confirmation of the early presence of species could assist in the timely establishment of emergency responses and control strategies. This study applied the developed assays to confirm the ability to detect Didemnid eDNA in water samples. While previous work has focused on detection of marine larvae from water samples, the development of real-time PCR assays specifically aimed at detecting eDNA of sessile invertebrate species in the marine environment represents a world first and a significant step forwards in applied marine biosecurity surveillance. Demonstrated success in the detection of D. perlucidum eDNA from water samples at sites where it could not be visually identified suggests value in incorporating such assays into biosecurity survey designs targeting Didemnid species.


Assuntos
Espécies Introduzidas , Reação em Cadeia da Polimerase em Tempo Real , Urocordados/genética , Animais , Incrustação Biológica , Meio Ambiente
12.
PLoS One ; 11(5): e0154201, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144600

RESUMO

Didemnid ascidians are notorious marine invaders, fouling infrastructure in many ecosystems globally. However, there have been few reports of direct interactions with native species in their natural environment. The invasive colonial ascidian Didemnum perlucidum was discovered in the Swan River estuary (Western Australia) growing on the native seagrass Halophila ovalis. Given the known effects of other related Didemnum species it was expected that D. perlucidum could adversely affect the seagrass, with possible flow on effects to the rest of the ecosystem. This study aimed to document the distribution and abundance of D. perlucidum in the estuary, and to determine whether this species had a negative impact on H. ovalis or associated flora and fauna. D. perlucidum was largely present near areas of infrastructure, particularly mooring buoys, suggesting these were the source of D. perlucidum recruits on the seagrasses. It showed a clear seasonal pattern in abundance, with highly variable cover and colony size. D. perlucidum had a measurable effect on H. ovalis, with colonies enveloping all plant tissue, likely restricting the photosynthetic ability of individual leaves and total plant biomass. There were also significantly less seagrass-associated mud snails (Batillaria australis) where D. perlucidum cover was high. These results demonstrate the ability of invasive ascidians to colonise and affect native seagrasses and associated biota. Seagrasses are pivotal to the ecological function of many urban estuaries world-wide. Biodiversity in these systems is already vulnerable to multiple stressors from human activities but the potential stress of fouling ascidians may pose an additional and increasing threat in the future.


Assuntos
Urocordados/crescimento & desenvolvimento , Animais , Biomassa , Biota/fisiologia , Ecologia , Ecossistema , Estuários , Gastrópodes/fisiologia , Hydrocharitaceae/crescimento & desenvolvimento , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA